sábado, 21 de abril de 2018

A veces los matemáticos no somos los más precisos...

Uno pensaría que en las matemáticas todo está definido con exactitud y es más típico de los burdos físicos el hacer aproximaciones y conformarse con estimaciones y cotas.

Sin embargo, hay problemas matemáticos que cuesta mucho hallar la solución exacta y a veces se va acotando superiormente e inferiormente para ver por donde se encuentra.

Teorema de los 4 colores

Por ejemplo el teorema de los 4 colores que nos dice que todo mapa dividido en regiones se puede colorear con a lo más a los 4 colores sin que haya dos regiones con frontera común (que no sean puntos aislados) pintados ambas del mismo color. Esto los chavales que van al salón del estudiante lo han aprendido de sobra después de que se lo hayamos dicho 500 veces junto con los puentes.



La demostración de este hecho (algunos no consideran siquiera que pueda llamarse demostración por hacerse a ordenador aunque otros, incluso profesores de nuestra facultad dirán que se fian más del ordenador que de ellos mismos...) es muy compleja y de entrada no se sacó de la noche a la mañana.

Se empezó acotándolo inferiormente pues es fácil ver que hay grafos planares que requieren 4 colores para colorear sus vértices (es equivalente esto a dividir por regiones considerando como si los vértices fueran las regiones y las aristas cuales tienen frontera en común). Por ejemplo, el grafo conocido como K4 o lo que es lo mismo los vértices de un cuadrado conectados y sus diagonales sin que estas se pisen (haciendo que una de ellas vaya por fuera para que el grafo sea planar). Todas los vértices están conectados al resto así que claramente hacen falta 4 colores.

Primero se demostró que cualquier grafo se podía colorear con 8 colores, así por empezar con un número que funcionó. Ya sabemos que estará entre 4 y 8. (La demostración de esto no es difícil pero por extensión no la haremos aquí). Al no mucho tiempo se consiguió sin demasiada dificultad bajar a 7 y luego a 6. Dem de a lo sumo 6

La demostración para 5 si es mucho más técnica y ni de lejos he podido entenderla ni le voy a dedicar el tiempo  para hacerlo (al menos no aún). Y ya en 1976 se hizo la prueba por ordenador determinando el resultado. Este es un ejemplo en el que se sabe ahora la respuesta exacta pero hay otros que no.

Primos Gemelos

Los primos gemelos no son aquellos que se conocieron a la vez ni nada por el estilo. Son primos que están a distancia 2 el uno del otro (Topólogos aquí podéis matarme por rigor pero creo que se me entiende). Dicho de otra forma números de la forma p, p+2 ambos primos.

Todos (o al menos todo matemático que se precie) sabe que hay infinitos números primos, cosa que demostró Euclides hace más de 2000 años ya. Algo que no es tan evidente es si hay infinitos primos gemelos. Y la respuesta es... que no lo sabemos.

Lo que sí se ha podido calcular es cotas superiores de distancia entre primos manteniendo su infinitud. Para que nos entendamos lo que hasta ahora hemos demostrado es que hay infinitos primos que están a menos de 256 unidades, de entrada puede parecer un poco inútil pero ha sido un gran avance con respecto a las primeras cotas superiores. Sabemos que la respuesta exacta de cuál es la mínima distancia entre primos habiendo infinitos primos de dicha forma está entre 2 y 256.

Primero Yitang Zhang probó como cota superior 70 millones. A ver, de infinito a esto hay un trecho. Después usando razonamientos parecidos a lo que dijo Yitang Zhang se fue bajando la cantidad. Se hizo un proyecto para optimizar los argumentos y se bajó hasta 4680 y luego se siguió con métodos aún más complejos. Más información aquí: https://www.youtube.com/watch?v=QKHKD8bRAro


Ya por último que suponemos que estaréis un poco hartos os traemos la cota que podríamos decir es menos útil de todas en un problema.

Número de Grahm


Vamos a primero a introducir el problema y luego este número que tiene nombre propio. Supongamos así de entrada un cubo n-dimensional. Un cuadrado si n=2 el cubo de toda la vida si n=3, hipercubo si n=4 y así.

Ahora vamos a ver esto como un grafo  considerando las aristas que unen los vértices de la figura n-dimensional. Se trata de un grafo completo de 2^n vértices.  La idea ahora es colorear cada arista que une 2 vértices en uno de dos colores, digamos azul o rojo.

La pregunta es cuál es la dimensión mínima tal que para cualquier coloreado que hagamos existirán cuatro vértices coplanares* tal que el subgrafo formado por dichos 4 vértices solo tiene un color.

*Coplanares significa que los 4 vértices (el K4 que se generaría) está en el mismo plano.

El subgrafo formado por los 4 vértices para entendernos es el K4 formado por esos vértices y las conexiones entre ellos, y solo tiene un color si sus 6 aristas son todas bien rojas o azules. La respuesta está acotada inferiormente por 6 (es decir, con 5 existe un coloreado tal que no existe ningun coloreado monocromático de 4 vértices coplanares y con 6 no sabemos)

Lo divertido llega con la cota superior al problema. Vamos a introducir la notación de la flehca↑
Una sola flecha es la potencias a las que estamos acostumbrados. 3↑4 = 3*3*3*3 (3 multiplicado por si mismo 4 veces.)

Ahora la flecha doble va a ser de la misma manera que la potencia es repetir la multiplicación va a ser reiterar la potencia. 2↑↑4 = (2^(2^(2^(2))))= 65536. La triple flecha significaría hacer de forma reiterada la doble flecha y así sucesivamente es la recursión. Por si no te has quedado con la copla abajo hay una imagen explicándolo.

No es difícil ver que los números crecen a una velocidad pasmosa a medida que vamos añadiendo flechas.

La triple flecha A↑↑↑B la podemos ver como A escrito una cantidad B de veces con 2 flechas entre cada par de Bs y luego desarrollar esas dobles flechas de la misma manera ahora con flechas simples.

Más detalle por si no lo has entendido del todo (que es normal dado que es complicado en: Notación Flecha.

Vamos a construir una secuencia de números g1,g2... para llegar hasta el número de Grahm.
Llamamos g1 al número 3↑↑↑↑3 un número ya de por si inimaginable. Aunque agarraos porque esto es solo el principio.

g2 es 3↑↑↑↑...↑↑↑↑3 habiendo g1 flechas entre ambos treses. Creo que ya vais viendo por donde va la cosa...
g3 es 3↑↑↑↑...↑↑↑↑3 habiendo g2 flechas entre ambos treses. Podía seguir escribirlo pero creo que se entiende y me siento vago la verdad.

g64 es 3↑↑↑↑...↑↑↑↑↑3 con g63 flechas entre ambos treses. Esta preciosidad, g64 inimaginable de ninguna de las maneras y ni de lejos representable con potencias (por eso hemos recurrido a esta notación) es el número de Grahm.

Casi na,¿ y para que sirve este gigantesco número? Pues este es una cota superior del problema que definimos antes. Dicho de otra forma que hemos `acotado` la solución del problema entre 6 y eso. Siempre me ha hecho muchísima gracia como de bestia es esta acotación. Ahora cuando apliquéis Bolzano o los círculos de Gershgorin al buscar una raíz o un autovalor y penséis que tenéis que buscar en una zona muy amplia al menos no tenéis un margen como este que aplicar en coloreados de cubos n-dimensionales y seguro que ahora vuestro aburrido  útil problema de cálculo numérico no parece tan coñazo de tener que hacer 10 iteraciones a mano feo y tedioso.

Nos vemos en la próxima entrada y si hay algún tema del que queráis que escribamos o queréis mandarnos un artículo vuestro que os interesa que expongamos podéis hacerlo por culturamates@gmail.com o hablando con nosotros en persona. Ciao